核能是人类历史上的一项伟大发现,这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。
核能发电是利用核反应堆中核裂变所释放出的热能进行发电的方式。它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外,其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的过饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。核能发电利用铀燃料进行核分裂连锁反应所产生的热,将水加热成高温高压,利用产生的水蒸气推动蒸汽轮机并带动发电机。核反应所放出的热量较燃烧化石燃料所放出的能量要高很多(相差约百万倍),比较起来所以需要的燃料体积比火力电厂少相当多。核能发电所使用的的铀235纯度只约占3%-4%,其馀皆为无法产生核分裂的铀238。
举例而言,核电厂每年要用掉80吨的核燃料,只要2支标准货柜就可以运载。如果换成燃煤,需要515万吨,每天要用20吨的大卡车运705车才够。
发电过程
核能→水和水蒸气的内能→发电机转子的机械能→电能
核电站的开发与建设开始于20世纪50年代。1954年前苏联建成发电功率为5兆瓦的实验性核电站;1957年,美国建成发电功率为9万千瓦的Ship Ping Port原型核电站。这些成就证明了利用核能发电的技术可行性。国际上把上述实验性的原型核电机组成为第一代核电机组。
20世纪60年代后期,在实验性和原型核电机组基础上,陆续建成发电功率30万千瓦的压水堆、沸水堆、重水堆、石墨水冷堆等核电机组,他们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明。目前,世界上商业运行的400多座核电机组绝大部分是在这一时期建成的,习惯上称为第二代核电机组。
20世纪90年代,为了消除三里岛和切尔诺贝利核电站事故的负面影响,世纪核电业界集中力量对严重事故的预防和缓解进行了研究和攻关,美国和欧洲先后出台了《先进轻水堆用户要求文件》,即URD文件和《欧洲用户对轻水堆核电站的要求》,即EUR文件,进一步明确了预防与缓解严重事故,提高安全可靠性等方面的要求。国际上通常把满足URD文件或EUR文件的核电机组称为第三代核电机组。对第三代核电机组要求是能在2010年前进行商用建造。
2000年1月,在美国能源部的倡议下,美国、英国、瑞士、南非、日本、法国、加拿大、巴西、韩国和阿根廷共10个有意发展核能的国家,联合组成了“第四代国际核能论坛”,与2001年7月签署了合约,约定共同合作研究开发第四代核能技术。
核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。若这些中子除去消耗,至少有一个中子能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提.
当今,全世界几乎16%的电能是由441座核反应堆生产的,而其中有9个国家的40%多的能源生产来自核能。
核能及其获取途径
核能,是核裂变能的简称。50多年以前,科学家在的一次试验中发现铀-235原子核在吸收一个中子以后能分裂,在放出2—3个中子的同时伴随着一种巨大的能量,这种能量比化学反应所释放的能量大的多,这就是我们今天所说的核能。核能的获得途径主要有两种,即重核裂变与轻核聚变。核聚变要比核裂变释放出更多的能量。例如相同数量的氘和铀-235分别进行聚变和裂变,前者所释放的能量约为后者的三倍多。被人们所熟悉的原子弹、核电站、核反应堆等等都利用了核裂变的原理。只是实现核聚变的条件要求的较高,即需要使氢核处于6000度以上的高温才能使相当的核具有动能实现聚合反应。
重核裂变
重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。例如,当用一个中子轰击U-235的原子核时,它就会分裂成两个质量较小的原子核,同时产生2—3个中子和β、γ等射线,并释放出约200兆电子伏特的能量。如果再有一个新产生的中子去轰击另一个铀-235原子核,便引起新的裂变,以此类推,裂变反应不断地持续下去,从而形成了裂变链式反应,与此同时,核能也连续不断地释放出来。
轻核聚变
所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。由于原子核间有很强的静电排斥力,因此在一般的温度和压力下,很难发生聚变反应。而在太阳等恒星内部,压力和温度都极高,所以就使得轻核有了足够的动能克服静电斥力而发生持续的聚变。自持的核聚变反应必须在极高的压力和温度下进行,故称为"热核聚变反应"。
氢弹是利用氘、氚原子核的聚变反应瞬间释放巨大能量这一原理制成的,但它释放能量有着不可控性,所以有时造成了极大的杀伤破坏作用。目前正在研制的"受控热核聚变反应装置"也是应用了轻核聚变原理,由于这种热核反应是人工控制的,因此可用作能源。
一种新能源—核能
目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态环境。
世界上核电国家的多年统计资料表明,虽然核电站的投资高于燃煤电厂,但是,由于核燃料成本远远地低于燃煤成本,相反核燃料反应所释放的能量却远远高于化石燃料燃烧所释放出来的能量,而且核燃料取之不皆,这就使得目前核电站的总发电成本低于烧煤电厂。
据估计,在世界上核裂变的主要燃料铀和钍的储量分别约为490万吨和275万吨。这些裂变燃料足可以用到聚变能时代。轻核聚变的燃料是氘和锂,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即"1升海水约等于300升汽油",地球上海水中有40多万亿吨氘,足够人类使用百亿年。地球上的锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。况且以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。